Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35207907

RESUMO

The effect of the heat treatment on the residual stresses of welded cladded steel samples is analyzed in this study. The residual stresses across the plate's square sections were determined using complementary methods; applying diffraction with neutron radiation and mechanically using the contour method. The analysis of the large coarse grain austenitic cladded layers, at the feasibility limits of diffraction methods, was only made possible by applying both methods. The samples are composed of steel plates, coated on one of the faces with stainless steel filler metals, this coating process, usually known as cladding, was carried out by submerged arc welding. After cladding, the samples were submitted to two different heat treatments with dissimilar parameters: one at a temperature of 620 °C maintained for 1 h and, the second at 540 °C, for ten hours. There was some difference in residual stresses measured by the two techniques along the surface of the coating in the as-welded state, although they are similar at the welding interface and in the heat-affected zone. The results also show that there is a residual stress relaxation for both heat-treated samples. The heat treatment carried out at a higher temperature showed sometimes more than 50% reduction in the initial residual stress values and has the advantage of being less time consuming, giving it an industrial advantage and making it more viable economically.

2.
Materials (Basel) ; 14(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917981

RESUMO

Experimental analyses of depth distributions of phase-specific residual stresses after deep rolling were carried out by means of laboratory X-ray diffraction and neutron diffraction for the two duplex steels X2CrNiMoN22-5-3 and X3CrNiMoN27-5-2, which differ significantly in their ferrite to austenite ratios. The aim of the investigation was to elucidate to which extent comparable results can be achieved with the destructive and the non-destructive approach and how the process induced phase-specific micro residual stresses influence the determination of the phase- and {hkl}-specific reference value d0, required for evaluation of neutron strain scanning experiments. A further focus of the work was the applicability of correction approaches that were developed originally for single-phase materials for accounting for spurious strains during through surface neutron scanning experiments on coarse two-phase materials. The depth distributions of macro residual stresses were separated from the phase-specific micro residual stresses. In this regard, complementary residual stress analysis was carried out by means of incremental hole drilling. The results indicate that meaningful macro residual stress depth distributions can be determined non-destructively by means of neutron diffraction for depths starting at about 150-200 µm. Furthermore, it was shown that the correction of the instrumental surface effects, which are intrinsic for surface neutron strain scanning, through neutron ray-tracing simulation is applicable to multiphase materials and yields reliable results. However, phase-specific micro residual stresses determined by means of neutron diffraction show significant deviations to data determined by means of lab X-ray stress analysis according to the well-known sin2ψ-method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...